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Abstract—Reachability queries are a fundamental graph op-
eration with applications in several domains. There has been
extensive research over several decades on answering reachability
queries efficiently using sophisticated index structures. However,
most of these methods are built for static graphs. For graphs that
are updated very frequently and are massive in size, maintaining
such index structures is often infeasible due to a large memory
footprint and extremely slow updates. In this paper, we introduce
a technique to compute reachability queries for very large and
highly dynamic graphs that minimizes the memory footprint and
update time. In particular, we enable a previously proposed,
index-free, approximate method for reachability called ARROW
on a compact graph representation called Bloom graphs. Bloom
graphs use collections of the well known summary data structure
called the Bloom filter to store the edges of the graph. In our
experimental evaluation with real world graph datasets with up
to millions of nodes and edges, we show that using ARROW
with a Bloom graph achieves memory savings of up to 50%,
while having accuracy close to 100% for all graphs.

Index Terms—Reachability, Dynamic graphs, Large graphs,
Bloom filters, Low memory footprint

I. INTRODUCTION

Reachability is a fundamental graph problem with wide
applicability in several domains such as XML databases, GIS,
web mining, analysis and access control on social networks,
business intelligence, and bio-informatics among others [2],
[8], [15]. A reachability query on a directed graph asks if
there exists a path between a designated source node u and
destination node v. To efficiently compute reachability, many
solutions have been proposed that work by building and using
sophisticated index structures on the graph [6], [7], [9], [13],
[22], [26], [27], [29]. But, real-world applications such as
social networks and call records often generate extremely large
and dynamic graphs. For example, each time a new connection
is formed or existing connection is discontinued in a social
network, an edge is inserted or deleted in the corresponding
graph. In such a scenario, an index is required to maintain the
reachability information as the graph evolves, and therefore
must be efficient to update.

Some techniques that efficiently maintain a reachability
index as the graph evolves have been proposed in [4], [14],
[17], [19], [28]. However, most of these methods do not scale
for extremely large or highly dynamic graphs. For example, in
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[17], the amortized time taken to update the reachability index
is O(m + n log n), where n and m are the number of nodes
and edges in the graph, respectively. For web-scale graphs like
social networks that have millions of nodes and edges, and also
update several times per second, such methods are unsuitable.
Moreover, the memory footprint of the graph as well as
the associated reachability index is often extremely large for
web-scale graphs. In this work, we address the challenge of
answering reachability queries for very large and dynamic
graphs by first, reducing the memory footprint of the graph
itself by using a compact graph representation, and second,
eliminating the memory footprint and update complexity of the
index by employing an index-free technique for reachability.

Bloom graphs, proposed in [10], are graphs that store the
neighborhood of each node in summary data structures called
Bloom filters [3], thereby leveraging the time and space
efficiency of Bloom filters to facilitate compact storage of
the graph and processing of graph updates. Operations such
as checking the existence of an edge or insertion of a new
edge in a Bloom graph correspond to the set membership and
element insertion respectively, both of which are constant time
operations on a Bloom filter. In [10], Bloom graphs are used
as a framework for efficiently tracking the conductance of a
large number of subsets of nodes as the graph evolves. The
conductance metric, which in this case is useful to evaluate
the popularity of topics on the Twitter network, is efficiently
updated with the evolving graph by utilizing fast intersection
operations on Bloom filters.

In this work, we explore the applicability of a Bloom graph
for answering the reachability query. ARROW, introduced in
[21], is an index-free method for computing reachability in
directed, dynamic graphs. Given a reachability query from
source node u to destination node v, ARROW is based on
running random walks from both u and v directly at query
time, without the use of any reachability index. Since ARROW
does not build or employ an index, it enables instantaneous
updates to the graph. In addition, it has a very small mem-
ory footprint, since it stores only the graph along with its
transpose. Our technique for using ARROW on a Bloom
graph, called BloomARROW, inherits the update efficiency of
ARROW and further reduces its memory footprint by using the
Bloom graph representation for compactly storing the graph.

A. Contributions

Our contributions are:
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1) We introduce a variant of the Bloom graph, called the
Hybrid Bloom graph, that reduces memory consumption
of the graph dataset. The savings achieved in memory
can be as high as 50% for large, real world graphs.

2) We propose BloomARROW, which uses the random
walk based algorithm ARROW on a Hybrid Bloom
graph to answer reachability queries on a large graph.

3) We conduct extensive empirical evaluation on real world
graphs to illustrate the advantages of BloomARROW
and Hybrid Bloom graphs.

B. Organization

The rest of this paper is organized as follows. In Section
II, we review previous work on reachability for static and
dynamic graphs. Section III describes Bloom filters and Bloom
graphs in detail. We describe variants of the Bloom graph and
our method BloomARROW in Section IV. We evaluate the
Hybrid bloom graph and BloomARROW in Section V and
conclude in Section VI.

II. RELATED WORK

Index-based reachability in static graphs may be broadly
classified into transitive closure retrieval, interval labeling,
and 2-HOP label matching [28], [30]. Methods that store
compressed forms of the transitive closure, which can be
retrieved at query time and used to answer reachability queries
extremely fast, are infeasible for massive graphs due to their
enormous memory and pre-processing overhead. The interval
labeling technique assigns to each vertex a set of intervals
such that a vertex u can reach v if any of the intervals of
v is contained in those of u [5], [12], [15], [22]–[27]. While
several of these methods are very efficient for large graphs,
the difficulty in updating the index as the graph updates limits
their use to static graphs only. In 2-HOP labeling methods,
each vertex stores a set of nodes that it can reach (Lout), and
a set of nodes that can reach it (Lin). In order to answer
the reachability query (u, v), the sets Lout(u) and Lin(v) are
intersected [6], [7], [18].

For dynamic graphs, an early work on reachability by
Agrawal et al [1] observes that the challenges of maintaining
transitive relationships are achieving small storage, efficient
look-up and frequent updates, and low incremental cost. Some
2-Hop techniques have been adapted for the dynamic setting.
In [30] for instance, a total order on the vertices is used to
support addition and removal of node type updates in time
O(n2), where n is the number of nodes in the graph. In [4], a
2-Hop reachability index satisfying the node separation prop-
erty is constructed, i.e. deletion of nodes in Lout(u)∩Lin(v)
from G disconnects u and v for any pair of nodes (u, v) in
G. This enables the index’s update cost to be O(n) 2-HOP
lookups. Roditty et al [17] propose another 2-HOP labeling
based deterministic, reachability algorithm with an update time
of O(m + n log n). In [28], the authors present DAGGER,
a reachability index for a dynamic graph that is based on
relaxed interval labeling on the equivalent DAG of the graph
constructed by condensing each of its strongly connected

components. Edge deletion and node removal type updates
are extremely expensive in this method, since a deleted edge
can cause a strongly connected component to split, triggering
re-computation for the DAG.

In the setting of large, highly dynamic graphs that we
consider, all of the above methods of maintaining an index
are unsuitable due to the update costs being at least O(n).
In contrast, we compute reachability in such graphs by using
an index-free technique called ARROW on a compact repre-
sentation of the graph called Bloom graphs. ARROW in [21]
has a constant update time for all types of updates, and query
computation is based on random walks conducted entirely at
query time. With no index, we support extremely fast update
time, and use Bloom graphs to minimize memory footprint of
the graph.

III. BACKGROUND

a) Bloom Filters: A Bloom filter [3] is a data structure
used to compactly store a set of elements. The Bloom filter
is composed of an array of m bits, and k independent hash
functions, h1 . . . hk. For a Bloom filter storing an empty set,
each of the m bits is 0. In a Bloom filter storing a non-
empty set, for each element x in the set, the k positions
h1(x) . . . hk(x) in the bit array are set to 1.

The Bloom filter is designed to support fast membership
queries. Given a Bloom fitler B(S) storing a set S, a mem-
bership query asks, “is x ∈ S” for a given element x. The
result of the membership query “is x ∈ S” is positive only
if all k locations h1(x) . . . hk(x) in the bit array are set to
1. However, note that the insertion of other elements could
have contributed to these locations being set, and thus the
probability of a false positive is non zero, and is equal to
≈ (1− e(−kn/m))k, where n = |S|. Thus, for a given size of
the bit array, the false positive probability of the Bloom filter
increases with the number of elements in S. The Bloom filter
cannot have false negatives.

Other than the membership query, the union and intersection
of a pair of Bloom filters can also be computed using bit-wise
OR and AND operations respectively.

b) Sampling from a Bloom Filter: The authors of [20]
introduce a technique to efficiently sample an element, almost
uniformly at random, from a set (called the query set) stored
as a Bloom filter (called the query Bloom filter). An auxiliary
binary tree data structure called the BloomSampleTree uses
a collection of Bloom filters to hierarchically organize the
name space, which is the universe of elements from which
a query set is drawn. A single BloomSampleTree suffices
to support sampling from any number of query sets drawn
from the same name space, as long as the Bloom filter
configuration such as size and number of hash functions used
is fixed across the query Bloom filters as well as those within
the BloomSampleTree. Each node in the BloomSampleTree
corresponds to a sub-range of the name space that is stored in
its Bloom filter, and the sub-range associated with an internal
node is partitioned into two roughly equal parts among its left
and right child nodes. The entire namespace is associated with
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the root node, which is level 0. Roughly half of the namespace
is associated with each node at level 1, and so on. The fraction
of namespace associated with a tree node at level l is M/2l,
where M is the size of the entire namespace. Given the query
Bloom filter b, the sampling algorithm begins at the root node.
b is intersected with the two Bloom filters situated at the left
and right child nodes of the root, and the estimated number
of elements in each intersection, say el and er are computed.
Note that el and er are estimates of the number of elements
b contains within each half of the namespace. The algorithm
moves to the left branch with probability Pl = el/(el+er), and
to the right branch with probability Pr = 1−Pl. This process
repeats and the search moves from the root down to a leaf node
of the BloomSampleTree. At this point, each element in the
significantly smaller sub-range of the name space associated
with the current leaf is subjected to the membership test of
the query Bloom filter. Finally, a sample is drawn uniformly
at random from the set of values that pass the membership
test.

Given the BloomSampleTree, and the query Bloom filter
b, the above sampling algorithm returns an element selected
almost uniformly at random from the set of elements that pass
the membership query of b. Over the naive method of iterating
over the entire name space and collecting the set of elements
that pass the membership query of b, this algorithm achieves
significant savings in sampling time by using the Bloom filter
intersection operation to prune large parts of the name space.

c) Bloom Graph: A Bloom graph uses a collection of
Bloom filters to space efficiently store a graph. As defined
in [10], for a graph G(V,E) and a positive integer m,
the Bloom graph B(G,m) is the collection of Bloom filters
{InG(u),OutG(u) : u ∈ V }, where InG(u) and OutG(u)
are both Bloom filters of size m and are termed neighborhood
filters of u.
InG(u) stores the set {w ∈ V : (w, u) ∈ E} or the

incoming neighbors of u. Similarly, OutG(u) stores the set
{w ∈ V : (u,w) ∈ E}, or the outgoing neighbors of u.
Therefore, the Bloom graph stores 2×|V | Bloom filters, each
of size m, to store the directed graph.

IV. METHOD

To answer reachability queries on the Bloom graph, we
employ the random walk based technique called ARROW,
proposed in [21]. ARROW is an index-free method that
answers reachability queries using random walks from both
source and destination nodes conducted at query time. AR-
ROW eliminates the need to store an index, and therefore
has both very low memory footprint and highly efficient
update time as opposed to existing index-based methods,
making it significantly more suitable in scenarios where the
underlying graph dataset is both large and highly dynamic. In
this section, we describe our technique, called BloomARROW,
to answer reachability queries when the graph is compactly
stored as a Bloom graph, such that the memory footprint of
BloomARROW is reduced even further from that of ARROW.

To answer a reachability query (u, v) on a Bloom graph
with n vertices, BloomARROW must run, from both u and v,
c1× 3
√
n2 lnn random walks, each of length c2×diam, where

diam is the graph diameter and c1 and c2 are user-defined
constants that control the trade-off between BloomARROW
accuracy and query latency, as in ARROW. While random
walks from u are run along the out-edges of nodes in the
graph, random walks from v are run along the in-edges , i.e.
on the transpose of the graph where the direction of each edge
is reversed. Nodes encountered during random walks from u
and v are collected in sets F (u) and B(v) respectively, and
reachability is reported to exist whenever F (u) ∩B(v) 6= ∅.

Conducting random walks on the Bloom graph requires the
ability to sample from the Bloom filter. In the following we
describe how the module for sampling from a given Bloom
filter is used to implement random walks on a Bloom graph.
Figure 1 illustrates the system for a random walk conducted
on the Bloom graph. The Bloom graph is represented using
a collection of Bloom filters, one for each node in the graph.
Each Bloom filter uses the same set of k hash functions H ,
and the same size of Bloom filter m. In a pre-processing
step, the BloomSampleTree is built. The name space of the
BloomSampleTree is the set of all vertices in the graph, and
each of the Bloom filters within the BloomSampleTree uses the
same set of hash functions H and Bloom filter size m. Given
the BloomSampleTree, and the Bloom graph, BloomARROW
conducts a random walk with source as query node u. The
walk begins at u, and the adjacency Bloom filter of u is passed
to the sampling module, which uses its BloomSampleTree
to sample an element from u’s Bloom filter. The sampling
module returns the node s, say, and that becomes the node
that the walk transitions to. This process is repeated until the
required number of steps are completed, or until the walk
reaches a dead-end (i.e. when the sampling module receives
an empty Bloom filter).

Clearly, accuracy of the sampling module has a direct
effect on the degree to which random walks follow actual
paths in the graph, and thus the reachability accuracy of
BloomARROW. A low accuracy will create random walks
along non-existent paths in the graph due a large number of
false positives, and thereby introduce false positives in the
result of BloomARROW. On the other hand, high accuracy
comes at the cost of using larger Bloom filters, leading to an
enormous memory footprint for the entire Bloom graph, which
stores a collection of these Bloom filters. Together, accuracy of
sampling, Bloom filter size and BloomSampleTree depth have
a direct influence on the space, query latency, and accuracy of
BloomARROW.

In the following section, we describe ways to reduce the
memory footprint of the Bloom graph for a given desired
accuracy of BloomARROW.

A. Storing the Bloom graph

To address the issue of exploding memory usage of a Bloom
graph built for increased accuracy, we explore alternative
methods of storing it. The key observation is that real world
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graphs typically have a power law degree distribution, i.e. a
large fraction of nodes have very small degree while a small
fraction have large degree. A Bloom filter size that can achieve
the desired accuracy for the highest degree node is several
orders of magnitude larger than that required for low degree
nodes. The representation of Bloom graphs presented until
now, that use fixed size Bloom filters for each node in the
graph, are termed Standard Bloom graphs. The Standard
Bloom graph faces the disadvantage of having to use a Bloom
filter size suited to the highest degree node, irrespective of
the degree distribution of the other nodes, leading to memory
wastage.

In order to tailor the memory footprint due to any given
node in the graph according to its actual degree, the Bloom
filters used must possess the capability to grow with the
sets they store. Dynamic Bloom filters, proposed by Guo
et al [11], are composed of a list of small standard Bloom
filters. Each unit Bloom filter in the list obeys a maximum
false positive threshold of fp0, and the last filter in the list is
the currently active one. When an element must be inserted
into the Dynamic Bloom filter, it is inserted into the active
Bloom filter. If the number of elements in the active Bloom
filter reaches a threshold n0 (i.e. its false positive probability
reaches fp0), a new unit Bloom filter is appended to the end
of the list, and becomes the currently active Bloom filter. n0

is determined from fp0 as

n0 =
log(1− fp

1/k
0 )

k log
(
1− 1

m

)
where k is the number of hash functions used and m is the
size of each unit Bloom filter.

A Dynamic Bloom filter storing nr elements has bnr/n0c
unit Bloom filters, each with a false positive probability of
fp0. In addition, it has a presently active Bloom filter of size

m, that stores nc = nr mod n0 elements. The overall false
positive probability of the Dynamic Bloom filter is

1− (1− fp0)
bnr/n0c ×

(
1−

(
1− 1

m

)nck
)k

In general, the false positive rate of a Dynamic Bloom filter
can be greater than fp0.

We define a Dynamic Bloom graph, that uses Dynamic
Bloom filters instead of standard Bloom filters for storing the
neighborhood of each vertex in the graph. While Dynamic
Bloom graphs help to reduce the memory footprint by a large
extent, the choice of the unit size of the Dynamic Bloom filters
used can have significant implications. A large unit defeats the
purpose of the Dynamic Bloom graph affecting its ability to
adapt to the degree distribution of the nodes, and a small unit
size increases the number of units stored for high degree nodes,
inflating the overall false positive probability of the Dynamic
Bloom filter in spite of small fp0 for individual units.

Clearly, the size of the individual Bloom filters must be large
enough to retain performance, while still reducing memory
usage. To this end, we propose the Hybrid Bloom graph,
which is characterized by a degree threshold d. The in- or out-
neighborhood of any node is stored in a Bloom filter of size m
only if the neighborhood size exceeds d. For all other nodes,
the set of neighbors is stored as a list. Therefore, given the
adjacency list representation of the graph, i.e. where for each
node in the graph the edges incident to it are simply stored as
a list, the Hybrid Bloom graph is obtained by converting the
largest edge lists into equivalent standard Bloom filters. Figure
2 illustrates the differences between the variants of Bloom
graphs.

Dataset Standard Dynamic Hybrid Adjacency List

Epinions 525.5491 335.7801 6.9107 8.7891
Enron 156.9528 82.6306 2.7615 3.7107

Facebook 42.2873 32.0453 7.1319 8.6963
Flickr 46297.2135 37782.3005 146.9525 350.5596

TABLE I: Memory footprint (in MBs) for variants of the
Bloom graph and the Adjacency list representation

Table I shows the memory consumed in MBs by each of
the variants to obtain a maximum false positive rate (across
all nodes) of 0.1 for 4 real world datasets (see Section V).
Also, it shows the size of the graph when stored in adjacency
lists. Clearly, among the Bloom graph variants, Hybrid Bloom
graphs are capable of providing a given threshold on the error
rate with the smallest memory footprint. For larger graphs,
such as the Flickr graph, it achieves more than 50% savings in
memory over the adjacency list representation. The remainder
of this section, therefore, focuses on BloomARROW with
Hybrid Bloom graphs.

B. BloomARROW on the Hybrid Bloom Graph
Conducting a random walk on the Hybrid Bloom graph is

a simple application of the Bloom filter sampling module. At
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Fig. 2: Bloom Graph Variants. Figure 2a is the Standard Bloom graph that stores the neighborhood of each vertex in the same
size Bloom filter, irrespective of their actual degree. Figure 2b is the Dynamic Bloom graph that uses Dynamic Bloom filters.
High degree nodes such as node b store more number of small Bloom filters to accommodate for their large neighborhood
list. Figure 2c is the Hybrid Bloom graph. Only nodes with degree ≥ 2 use Bloom filters of fixed size. Other nodes of smaller
degree simply store their neighborhoods in a list. Note that sampling accuracy for all low degree nodes not storing Bloom
filters is 1 in the Hybrid Bloom graph.

each step of the walk, a random neighbor of the current node
must be sampled. If the neighbors are stored in a Bloom filter,
then it is passed to the sampling module, and if in a list, then
a sample is directly drawn from it uniformly at random. Note
that in a Hybrid Bloom graph, sampling accuracy for nodes
that do not store Bloom filters is 1, thereby increasing the
average sampling accuracy across all nodes.

In this section, we discuss implementation details for con-
ducting a random walk on the Hybrid Bloom graph. A random
walk on the Hybrid Bloom graph must sample from a Bloom
filter each time it encounters a high degree node. Since
sampling from a Bloom filter is far slower than sampling
from a list, this can adversely impact the total time taken
to conduct the random walk, and thus the query latency.
Therefore, the significant savings in memory footprint offered
by Hybrid Bloom graphs come at the cost of longer time to
sample neighbors of nodes and thus slower random walks. The
following optimization strategies were employed to reduce the
time taken to conduct a random walk, thereby reducing query
latency.

a) Sampling Multiple Items: Whenever the random walk
encounters a node with a Bloom filter, it uses the sampling
module to sample k > 1 items at once (see [20]). In our
experiments, k = 10. The sampled elements are stored in a
buffer of size k, and a distinct element is used each time a
random walk returns to the node. After k visits, the buffer is
exhausted, and is rebuilt on the (k+1)th visit. This procedure
helps to amortize the walk time over a number of steps and
random walks.

b) Multi-threaded Sampling: Sampling multiple items
from the BloomSampleTree involves pursuing multiple paths
along the tree concurrently. We implement a multi-threaded
procedure based on the producer-consumer paradigm for sam-
pling multiple items. A major cause for the traversal of false
positive paths, or paths that do not lead to a valid sample in
the BloomSampleTree is that the Bloom filters at levels closest
to the root node are extremely dense, thereby generating more
error (See Section III). As a result, the sampling procedure

proceeds along both child nodes whenever it reaches such a
node, even though samples may actually exist only along one
branch. To prune out such false positive paths, the sampling
procedure is updated as follows: At an internal node, the bit-
wise intersection of the neighborhood Bloom filter (which is
to be sampled from) is computed with the Bloom filters at the
left and right child nodes. Only if the size of both intersections
exceeds T ×m, where m is the Bloom filter size, and T is
a user-selected threshold, (in our experiments, T = 0.75) the
procedure is allowed to move along both branches. Otherwise,
it randomly selects one branch with probability proportional
to the corresponding intersection size.

c) Truncated BloomSampleTree Sampling: Note that the
BloomSampleTree partitions the namespace into only two
parts at level 1 (where root is level 0). This means that
when a sample must be drawn from a given Bloom filter
having elements in both halves of the namespace, it must be
intersected with all 4 Bloom filters at level 2, rendering the
two intersections at level 1 redundant. Moreover, the redundant
computation is repeated each time samples are drawn from this
Bloom filter. To avoid this, we pre-compute for each vertex
v with a Bloom filter, the largest BloomSampleTree level lv
such that the intersection of v’s neighborhood with each Bloom
filter in the lthv level of the BloomSampleTree is non-empty.
Each time sample neighbors for node v must be drawn, the
sampling procedure starts multiple concurrent paths directly
from the nodes at level lv of the BloomSampleTree.

V. EXPERIMENTS

We evaluate the performance of BloomARROW with ex-
periments on real world datasets. We show that BloomAR-
ROW performs extremely accurately in practice, and has a
significantly lower memory footprint than ARROW, although
the query latency of BloomARROW is larger due to the
requirement to frequently sample from the Bloom filter.

a) Setup: We use real datasets Epinions, Enron, and
Flickr from the Konect repository [16], and Facebook, used
in [21]. While Flickr and Facebook are social networks, Enron
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is an email network, and Epinions is a trust/distrust network
on the product rating website. Table II shows properties of the
graphs including number of nodes, edges, and average degree.
In each of these datasets, we apply the graph stream to the
initial graph and obtain the final graph snapshot. In addition,
we use reachability queries generated corresponding to each
dataset as in [21] to evaluate the performance of random walks
and BloomARROW. To compute the result of a query, both
ARROW and BloomARROW run c1× 3

√
n2 lnn random walks,

each of length c2 × diam, where n = |V | is the number of
nodes in the graph, diam is its diameter (the longest shortest
path in the directed graph), c1 = 0.01 and c2 = 1.

For each dataset, the Hybrid Bloom graph configuration is
varied using the parameter d, or the degree threshold. Only
nodes with degree > d opt to store Bloom filters instead of
the actual neighborhood list. Larger the value of d, smaller is
the set of nodes that store Bloom filters. When d is equal to
the maximum degree of the graph, the Hybrid Bloom graph
reduces to the adjacency graph. In our experiments, d is varied
from m/16 to m/4, where m is the Bloom filter size and is
set to m = 8 × davg , davg being the average degree of the
graph (including in- and out- degrees).

Dataset |V | |E| davg

Epinions 131828 841372 13
Enron 87274 1148072 8
Flickr 2302936 33140017 29

Facebook 63732 905565 29

TABLE II: Datasets

We compare ARROW and BloomARROW with the Hybrid
Bloom graph along the following metrics.

• Memory footprint: The in-memory size of the graph. In
the case of the adjacency list representation, for each
node in the graph its incident edges are stored as a
list, and the memory consumption is the total memory
occupied by all of the lists. For a Hybrid Bloom graph,
the memory footprint includes the space used by Bloom
filters employed for high degree nodes, and edge lists
used for other nodes. For both representations, we include
the memory occupied by node pointers in the total
memory footprint. Since the Hybrid Bloom graph stores
the largest neighborhood lists in the graph compactly in
Bloom filters, its memory footprint is expected to be
smaller than using adjacency lists.

• Random walk time: The average time taken by a random
walk conducted by ARROW or BloomARROW. Since
random walks rely on drawing random samples at each
node, we expect that walks on a Hybrid Bloom graph
will be slower than walks on the adjacency graph.

• Reachability accuracy: The random walk on a Hybrid
Bloom graph may transition along edges that do not
actually exist in the graph. Note that while sampling from
a Bloom filter, it is not possible to distinguish between
true and false positives. Therefore, if the Bloom filter at

a node in the Hybrid Bloom graph generates a sample
that is a false positive, the random walk transitions to the
sampled node, and hence follows a false positive path. A
false positive path may result in a random walk started
at node s to reach a node t even when s cannot reach t
in the underlying graph. Note, however, that this is not
always true – s may reach t in the underlying graph via
some other path, while the random walk reaches t via a
false positive path. We report the reachability accuracy of
random walks, which is equal to the fraction of random
walks whose source nodes can reach their destination
nodes in the underlying graph.

• ARROW Query time: The time taken to answer a reach-
ability query with ARROW will include the time taken
to conduct the random walks from both source and
destination nodes and that to intersect the set of nodes
visited in each direction. As with walk time, we expect
that BloomARROW will be slower than ARROW

• ARROW Accuracy: Accuracy of ARROW is affected
only due to false negatives, i.e., it may happen that no
pair of random walks in either direction visit a common
node, in spite of there being a path between the source
and destination. In BloomARROW on the Hybrid Bloom
graph, the accuracy may further be affected due to false
positives. Since random walks can follow false positive
paths, random walks in either or both directions can visit
nodes that are not reachable from the source, or cannot
reach the destination. As a result, intersection of the two
sets may be non-empty and the query can result in true
even though reachability does not actually exist.
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Fig. 3: Memory footprint of ARROW vs BloomARROW

b) Results: In Figure 3, the memory footprint of
BloomARROW using the Hybrid Bloom graph, is compared to
that of ARROW which uses the adjacency graph. The Hybrid
Bloom graph achieves space saving of up to 50 %, which
can be highly significant when storing a massive graph that
cannot fit in memory. With smaller Bloom filter sizes, i.e.
where a higher false positive rate can be tolerated, the memory
advantage will be even more pronounced.

222



10-6

10-5

10-4

10-3

10-2

10-1

 5  10  15  20  25  30

Ti
m

e(
s)

Degree Threshold

Adjacency Graph
HybridBloomGraph

(a) Epinions

10-6

10-5

10-4

10-3

10-2

10-1

100

 4  6  8  10  12  14  16

Ti
m

e(
s)

Degree Threshold

Adjacency Graph
HybridBloomGraph

(b) Enron

10-5

10-4

10-3

10-2

10-1

100

101

 10  15  20  25  30  35  40  45  50  55  60

Ti
m

e(
s)

Degree Threshold

Adjacency Graph
HybridBloomGraph

(c) Flickr

10-6

10-5

10-4

10-3

10-2

10-1

 10  15  20  25  30  35  40  45  50  55  60

Ti
m

e(
s)

Degree Threshold

Adjacency Graph
HybridBloomGraph

(d) Facebook

Fig. 4: Time taken by a Random Walk on the Hybrid Bloom
graph vs the adjacency graph
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Fig. 5: Reachability Accuracy of the Random Walk on the
Hybrid Bloom graph vs the adjacency graph

Figure 4 compares the average time taken by random walks
(across all queries) for the Hybrid Bloom graph and the
adjacency graph. As predicted, the walk time on the Hybrid
Bloom graph is significantly larger than that on the adjacency
graph. As the degree threshold increases, fewer nodes store
Bloom filters, and therefore, sampling at those nodes becomes
faster, reducing the average walk time. Similarly, figure 5
evaluates the reachability accuracy of the random walks across
all queries on the Hybrid Bloom graph and the adjacency
graph. The reachability accuracy of random walks on the
adjacency graph is trivially 1, since the random walks are
conducted directly on the edges of the underlying graph, and
there is no source of false positives. The reachability accuracy
of walks on the Hybrid Bloom graph range from 60 − 90%.
This is due to the fact that a false positive path can result
from a false positive sample on any Bloom filter storing node
on the path of the random walk, increasing the probability of
visiting a node that is not reachable in the underlying graph.
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Fig. 6: Query latency of ARROW vs BloomARROW
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Fig. 7: Accuracy of ARROW vs BloomARROW

Figures 6 and 7 evaluate the query latency and reachability
query accuracy of ARROW and BloomARROW. Due to slower
random walks, the time taken by BloomARROW is larger than
ARROW. Contrary to intuition however, BloomARROW is
consistently more accurate than ARROW, achieving accuracy
close to 100% in each case. This seems unexpected because the
usage of Bloom filters introduced false positives, in addition to
the already existing false negatives of ARROW, and so should
have decreased average accuracy. But, the ability of random
walks to follow false positive paths actually helps to mitigate
false negatives in BloomARROW. For a reachability query
in which both nodes belong to the same strongly connected
component (SCC), random walks on the adjacency graph may
escape the SCC and never return, thereby constituting the
dominant cause of false negatives of ARROW. In a Bloom
graph, on the other hand, such random walks have a non-zero
probability of returning to the SCC, due to false positives, and
therefore are likely to eliminate the false negative. While the
reduced probability of a false negative does not readily justify
theoretically, it is very often observed in practice, as is evident
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from Figure 7.

VI. CONCLUSION

In this paper, we have enabled an index-free, approximate
technique for reachability called ARROW on Bloom graphs,
which are a form of graph representation that allow storing the
edges of massive graphs in compact summary structures called
the Bloom filter. Other than the previously proposed Standard
Bloom graphs, we have introduced two further variants called
Dynamic Bloom graphs and Hybrid Bloom graphs, and have
shown using experiments on real world graph datasets that
Hybrid Bloom graphs are capable of achieving significant
memory advantages over other representations. In summary,
our technique, called BloomARROW using Hybrid Bloom
graphs provides a method for computing reachability in highly
dynamic, massive graphs with minimized memory usage and
high accuracy.
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