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Abstract
Recently, neural networks have allowed computers to solve numer-

ous problems in various fields such as natural language processing

and computer vision. Compared to traditional algorithms, machine

learning models have proven to be both more successful and more

difficult to interpret. Neural networks are considered as black boxes

that are unable to easily explain themselves, i.e. justifying the rea-

sons that led them to make a prediction. Layer-wise Relevance

Propagation (LRP) is a technique that has been introduced to en-

sure explainability by identifying the input features relevant to

the output choice. In parallel, research in provenance theory has

developed annotation techniques, which can for instance be used

to compute query provenance in databases.

In this paper, we extend LRP propagation rules to semiring-based

provenance annotations of a network and implement semiring-

based propagation rules for computer vision models of different

scales. We show that different semirings lead to different types

and granularities of explanations, and that such techniques can be

applied to perform tasks like image mask computation and neural

network pruning.
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• Computing methodologies→ Neural networks; Algebraic
algorithms; • Theory of computation→ Data provenance.
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1 Introduction
Supervised machine learning is a long-studied field that helps in

solving various real-world problems by using some data comprising

inputs with given correct outputs (called training) to predict the
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Forward pass: semiring annotation
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Figure 1: An illustration of semiring-based layer-wise rele-
vance propagation. The forward pass annotates the neurons
with semiring elements, while the backward pass propagates
the relevance of the output neuron to the input neurons.

output for completely new inputs (called testing). More recently,

neural networks, which are well-known machine learning models,

have been proven to be successful in solving such problems with

high accuracy. Numerous variants of neural networks have been

proposed for various applications, ranging from simple multilayer

perceptrons (MLPs) for solving general classification and regression

tasks to convolutional neural networks (CNNs) for problems on

images, recurrent neural networks (RNNs) for problems on text

and other sequential inputs, and transformers, which are used to

create complex tools such as large language models (LLMs). The

expressivity of the class of functions generated by neural networks,

combined with the relative simplicity of their training, makes such

models versatile tools for learning the relationship between the

inputs and outputs of a dataset.

However, this versatility comes at the cost of poor interpretabil-

ity: a neural network is simply a black box representing a function

from one high-dimensional space to another, but provides no justifi-

cation or explanation for a given execution. If metrics like accuracy

over a test set provide confidence in the fact that the model is able

to correctly classify inputs similar to the training set, no guaran-

tee is given that the model generalizes well. Real-world examples

show that networks can overfit training data or even take short-

cuts instead of learning the intended solution [17]. For the end

user to have confidence in its predictions, a neural network should

therefore be able to highlight the patterns in the input data that it

actually learned, or more generally, provide an explanation of how
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it arrived at its conclusion. This is the motivation behind the rise

of explainable artificial intelligence (XAI) [35].

Layer-wise Relevance Propagation (LRP) [6] has been introduced

as a technique to explain a neural network’s execution. LRP propa-

gates the output of the function backward in the network, using

various rules to compute the relevance of a neuron depending on

those of the neurons of the upstream layer. LRP introduces the

notion of relevance score for a neuron, intuitively quantifying the

contribution of this neuron to the final output. A high relevance

score indicates that the neuron led to the activation of the con-

sidered output; a low score represents neurons that increased the

activation of another output neuron instead of the one considered.

In parallel, the notion of data provenance in database theory has

developed formal solutions to a similar problem. Data provenance

aims at explaining a query by highlighting the tuples in the original

database that lead to the presence of a certain tuple in the query

result. Although contexts are different, explanation of deep neural

networks and data provenance share the same general setup: iden-

tifying a subset of the input that directly implies a certain output,

and showing how these were used to lead to the final answer.

A formal framework to approach data provenance is a provenance
semiring [18], which annotates tuples using abstract elements of

a semiring and applies semiring operations to the tuples appear-

ing in the query. As the query is executed, information about the

provenance of the intermediate results is aggregated, resulting in

an abstract formula that can be instantiated by substituting abstract

elements and operations by a concrete semiring. Similarly, in the

context of graph databases, edges can be annotated to compute a

variety of properties of a graph query result [30].

Contributions. In this paper, we take the first steps to extend the

classic layer-wise relevance propagation using semiring annota-

tions, as illustrated in Figure 1. While classic LRP models relevances

of neurons as real numbers, our semiring-based LRP models them

using abstract elements of a semiring. Also, for computing rele-

vances of neurons in a layer, our model applies semiring operations

(instead of the usual addition and multiplication) to those of neu-

rons of the upper layer. As we show in our experiments, different

semirings lead to different types and granularities of explanations,

each of which can be useful for specific applications.

Our contributions are the following:

•We generalize LRP to annotation using semiring elements, with a

goal to compute the relevance values of all neurons such that a cer-

tain conservation property (w.r.t. semiring operations) is satisfied.

•We propose an approximate solution to our problem using an-

notation functions which map real-valued neuron activations and

weights to semiring elements. We formally define the annotation

functions for the four semirings we study.

•We show experimentally, using two neural network architectures,

that relevances based on different semirings provide varied explana-

tion semantics in an image classification setup.We also demonstrate

applications of semiring-based relevance to perform tasks such as

computing image masks and pruning neural networks.

Outline. The remainder of this paper is organized as follows. In

§ 2 we review previous works on neural network explainability

and data provenance. § 3 provides formal descriptions of neural

networks, semirings and neuron relevance, followed by the formal

statement of our problem.We propose our solution and analyze it in

§ 4. In § 5 we experimentally demonstrate the explanations provided

by our semiring-based relevance, followed by applications to image

mask computation and neural network pruning. § 6 concludes the

paper and suggests some future research directions.

2 Related Work
This work is at the intersection of two research areas: explainability

in neural networks and data provenance, as outlined below.

Explainability in Neural Networks. Given the inherent black-

box nature of neural networks, explaining their behavior has been

explored in a large number of works [35]. Some consider a neural

network as a black box and do not access its internal structure [15],

while others take advantage of the internal states and weights of a

network [6, 11, 23, 31]. A distinction is also made between local and

global explanations: a local result explains a single execution of the

model, while a global result tries to understand the model for any

possible execution [34]. Moreover, self-explaining approaches use

only the data made available by the model computation during the

prediction, while post-hoc approaches perform more operations af-

ter the initial inference. In addition, explanations of neural network

outputs can take various forms. Mechanistic interpretability [7, 27]

studies the fundamental components of networks through a granu-

lar analysis of features, neurons, layers, and connections, offering

an intimate view of operational mechanics. Circuits [13, 20, 28],

the minimal computational subgraphs of neural network models

with behaviour faithful to that of the whole model for a given task,

constitute one form of explanations offered by mechanistic inter-

pretability. Causal interpretability [3, 26] is based on the abstraction

of causal graphs, representing causal relationships between various

components of the model. Causal methods employ counterfactual

interventions [22] on some part of the model or its input to identify

the components leading to the same output despite the interven-

tions. Concept-based explanations [29] provide a more holistic view

of the inner workings of the model by explaining its predictions in

terms of human-understandable attributes or abstractions.

Data Provenance. Data provenance deals mainly with how one

can track the origin of data through a process; in databases, that can

be the origin of query outputs [9, 10]. Related to this is the concept

of data lineage [2] and the corresponding Trio system. Theoretically,

for SQL queries and database applications, the provenance semiring
framework [18] has been shown to fully capture query provenance

semantics; it also captures previous forms of provenance. Exten-

sions of the semiring framework to more complex queries can be

found in [4, 8, 16]. Examples of modern provenance tracking sys-

tems in relational databases are ProvSQL [32] and GProM [5].

3 Preliminaries
In this paper we focus on neural networks trained for classification,

where for input x = (𝑥1, . . . , 𝑥𝑛)𝑇 ∈ R𝑑
, the output is one of 𝑐

possible classes, with 𝑦 being the ground-truth class for x.

3.1 Neural Networks
A neural network is a set of layered units or nodes called neurons

connected by edges between each pair of neurons in consecutive

layers. We denote the total number of layers as 𝐿 and the neuron
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at position 𝑖 in layer 𝑙 as 𝑣
(𝑙 )
𝑖

, with the total number of neurons

in layer 𝑙 being 𝑛𝑙 . Layer 1 corresponds to the input to the neural

network and layer 𝐿 to the output. The weights of edges from

nodes in layer 𝑙 to those in layer 𝑙 + 1 are represented as a matrix

𝑊 (𝑙,𝑙+1) ∈ R𝑛𝑙×𝑛𝑙+1
, with element𝑤

(𝑙,𝑙+1)
𝑖 𝑗

denoting the weight of

the edge from node 𝑖 in layer 𝑙 to node 𝑗 in layer 𝑙 + 1. Neuron
𝑖 in layer 𝑙 outputs a value (a.k.a. activation) 𝑎

(𝑙 )
𝑖

defined by the

following recurrence relation:

𝑎
(𝑙 )
𝑖

=

{
𝑥𝑖 if 𝑙 = 1

𝑔 (𝑙 )
(∑𝑛𝑙−1

𝑗=0
𝑎
(𝑙−1)
𝑗

𝑤
(𝑙−1,𝑙 )
𝑗𝑖

)
otherwise

(1)

Here 𝑔 (𝑙 ) : R𝑛𝑙 → R is a non-linear activation function (e.g. ReLU,

tanh etc.). In order to incorporate node biases within this notation,

we denote the bias of neuron 𝑗 in layer 𝑙+1 as𝑤 (𝑙,𝑙+1)
0𝑗

and set 𝑎
(𝑙 )
0

=

1 for 𝑙 ∈ [1, 𝐿]. This is equivalent to inserting a dummy neuron

with index 0 in each layer to serve the purpose of propagating bias

to each neuron in the next layer.

3.2 Neuron Relevance and Semirings
In Layer-wise Relevance Propagation (LRP) [6] explanations are ob-

tained by propagating the output relevance backwards through the

network while respecting a conservation law. For the 𝑖-th neuron

of layer 𝑙 , LRP introduces the quantity 𝑅
(𝑙 )
𝑖

, called the relevance of
the neuron, which quantifies how much this neuron contributed to

the final classification. A simple way to distribute weights is

𝑅
(𝑙 )
𝑖

=


𝑎
(𝑙 )
𝑖
× 𝐼 [𝑖 = 𝑦 ] if 𝑙 = 𝐿[∑𝑛𝑙+1

𝑗=0

𝑎
(𝑙 )
𝑖

𝑤
(𝑙,𝑙+1)
𝑖 𝑗∑𝑛𝑙

𝑖′=0 𝑎
(𝑙 )
𝑖′ 𝑤

(𝑙,𝑙+1)
𝑖′ 𝑗

]
× 𝑅 (𝑙+1)

𝑗
otherwise

(2)

Here 𝐼 [·] is the indicator function (1 if true, 0 otherwise). For the last
layer (𝐿), only the neuron corresponding to the ground truth class𝑦

is relevant, and its relevance is equal to its activation. For all other

layer, the relevance of a neuron 𝑖 is the sum of the contributions of

this neuron to the ones of the next layer, weighted by the quantity

𝑎
(𝑙 )
𝑖

𝑤
𝑙,𝑙+1
𝑖 𝑗

, which models the extent to which neuron 𝑖 contributes

to the activation of neuron 𝑗 in layer 𝑙 + 1. Note that if either the
weight𝑤

(𝑙,𝑙+1)
𝑖 𝑗

or the activation 𝑎
(𝑙 )
𝑖

is zero, then the neuron 𝑖 does

not contribute to the activation of neuron 𝑗 in layer 𝑙 + 1, and hence
its relevance is zero. The denominator is then added to ensure that

the total relevance is conserved, i.e. the sum of the relevances of

all neurons in layer 𝑙 is equal to the sum of the relevances of all

neurons in layer 𝑙 + 1.
We aim to extend Layer-wise Relevance Propagation by anno-

tating the computational graph of a neural network with semiring

elements. We begin by providing a mathematical definition of a

monoid, using which we define a semiring.

Definition 1 (Monoid). Amonoid (K, ⊙, 𝑒) is an algebraic struc-
ture composed of a set K, a binary operator ⊙ and an element 𝑒 ∈ K,
satisfying the following properties:
• ∀𝑎, 𝑏, 𝑐 ∈ K, (𝑎 ⊙ 𝑏) ⊙ 𝑐 = 𝑎 ⊙ (𝑏 ⊙ 𝑐)
• ∀𝑎 ∈ K, 𝑎 ⊙ 𝑒 = 𝑒 ⊙ 𝑎 = 𝑎

The monoid is called commutative if for all 𝑎, 𝑏 ∈ K, 𝑎 ⊙ 𝑏 = 𝑏 ⊙ 𝑎.
An element 𝑜 ∈ K is called absorbing or annihilating if for all 𝑎 ∈ K,
𝑜 ⊙ 𝑎 = 𝑎 ⊙ 𝑜 = 𝑜 .
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Figure 2: A neural network with edges annotated with real-
valued weights (left) and boolean semiring elements (right).

Definition 2 (Semiring). A semiring (K, ⊕, ⊗, 0, 1) is an alge-
braic structure composed of a set K, binary operators ⊕ and ⊗ such
that ⊗ distributes over ⊕, satisfying the following properties:
• (K, ⊕, 0) is a commutative monoid.
• (K, ⊗, 1) is a monoid such that 0 is absorbing (annihilating).

We provide four examples of semirings suited for application to

deep neural networks.

Example 1 (Real semiring). (R, +,×, 0, 1) is a semiring. While
it has no direct interpretation is the context of databases, we will see
that it corresponds to the basic real-valued LRP.

Example 2 (Boolean semiring). (B,∨,∧,⊥,⊤) whereB := {⊥,⊤}
is a semiring. In database provenance, its use is interpreted as the
existence of a path between two vertices, using edge weights as the
number of different paths between two adjacent vertices.

Example 3 (Counting semiring). (N, +,×, 0, 1) is a semiring.
For a non-cyclic graph database, its use allows to compute the total
number of paths between two vertices, using edge weights as the
number of different paths between two adjacent vertices.

Example 4 (Viterbi semiring). ( [0, 1],max,×, 0, 1) is a semiring.
For a non-cyclic graph database where the annotations are interpreted
as a confidence measure, its use allows to compute the confidence score
of the result of a query.

Similar to the classic LRP [6], we can express semiring layer-

wise relevance in terms of messages sent to neurons of the previous

layers. We denote by 𝑅
(𝑙,𝑙+1)
𝑖←𝑗

the message received by neuron 𝑖

in layer 𝑙 from neuron 𝑗 in layer 𝑙 + 1. Note that the messages

are directed from a neuron towards its input neurons, in contrast

to what happens at prediction time. Specifically, we define the

relevance of a neuron as the sum (w.r.t. the addition operator ⊕) of
its incoming messages, except for those in the output layer whose

relevance is simply whether or not they correspond to the ground

truth class 𝑦 for the input x. This definition is formalized below.

Definition 3 (Neuron Relevance). The relevance of neuron 𝑖
in layer 𝑙 w.r.t. semiring (K, ⊕, ⊗, 0, 1) is defined as

𝑅
(𝑙 )
𝑖

=

{
I[𝑖 = 𝑦 ] if 𝑙 = 𝐿⊕𝑛𝑙+1

𝑗=0
𝑅
(𝑙,𝑙+1)
𝑖←𝑗

otherwise
(3)

where I[·] is the indicator function (1 if true, 0 otherwise).

Intuitively, (3) can be interpreted in two ways, as illustrated in

Figure 2. Firstly, it can be seen as the abstraction of an LRP com-

putation using formal semiring elements. Computing relevance

w.r.t. (K, ⊕, ⊗, 0, 1) for an execution of the network results in an

abstract formula in terms of elements of K and operations ⊕ and
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⊗. While this might be useful in the context of graph provenance,

visualizing abstract formulae is difficult because of the size of the

computational graphs associated with neural networks. Further-

more, the general structure of the formulae is always the same for

a specific model, since neural networks usually have very simple

computational graph structures. Therefore, a second approach that

fits the graph properties of neural networks is to interpret (3) as

operations on an annotated circuit, similar to [32]. For instance, in

the case of the boolean semiring, computing relevance consists of

taking, for each node, the logical conjunction of the annotations of

its outgoing edges.

3.3 Problem Statement
Wewould like to find message values (and hence neuron relevances)

which ensure that the overall relevance of all neurons is conserved

(remains the same) in each layer. An even stronger condition is that

the sum (w.r.t. the addition operator ⊕) of the messages entering a

neuron, which is the relevance of the neuron, is equal to the sum

of the messages leaving it. We formally state this problem.

Problem 1. Given a trained neural network with 𝐿 layers and a
semiring (K, ⊕, ⊗, 0, 1), find a set of messages{

𝑅
(𝑙,𝑙+1)
𝑖←𝑗

∈ K : 𝑖 ∈ [0, 𝑛𝑙 ], 𝑗 ∈ [0, 𝑛𝑙+1 ], 𝑙 ∈ [1, 𝐿 − 1]
}

(4)

such that for each 𝑙 ∈ [2, 𝐿] and 𝑗 ∈ [0, 𝑛𝑙 ]
𝑛𝑙−1⊕
𝑖=0

𝑅
(𝑙−1,𝑙 )
𝑖←𝑗

= 𝑅
(𝑙 )
𝑗

(5)

The difference between (5) and (3) is that in (5) the sum runs

over the “sources” at layer 𝑙 for a fixed neuron 𝑗 at layer 𝑙 + 1, while
in (3) the sum runs over the ‘sinks’ at layer 𝑙 + 1 for a fixed neuron

𝑖 at a layer 𝑙 . One can interpret (5) as messages 𝑅
(𝑙−1,𝑙 )
𝑖←𝑗

being used

to distribute the relevance of neuron 𝑗 to its input neurons.

4 Solution
We propose an approximate solution to Problem 1 and analyze its

quality and running time, followed by instantiations on the four

semirings in §3.2.

4.1 Algorithm and Analysis
As mentioned in §3.2, knowing the relevance of a certain neuron for

the classification decision, we would like to obtain a decomposition

of the relevance in terms ofmessages sent to neurons of the previous

layers. Suppose we are given a semiring (K, ⊕, ⊗, 0, 1). An obvious

choice would be to assign the values of the messages proportional

to the activations a neuron receives from those in its previous

layer. However, notice that neuron activations and edge weights

are real numbers, whereas our relevance values must be from K.

Thus, for all layers of the neural network, we define annotation

functions

{
Θ(𝑙 ) : 𝑙 ∈ [1, 𝐿 − 1]

}
which map real numbers to values

inK. Given this, we set the values of the message sent by a neuron 𝑗

in layer 𝑙+1 to neuron 𝑖 in layer 𝑙 toΘ(𝑙 ) (𝑝), where 𝑝 is proportional

to the activation that 𝑖 sends 𝑗 . That is,

𝑅
(𝑙,𝑙+1)
𝑖←𝑗

= Θ(𝑙 )
©­«

𝑎
(𝑙 )
𝑖

𝑤
(𝑙,𝑙+1)
𝑖 𝑗∑𝑛𝑙

𝑖′=0 𝑎
(𝑙 )
𝑖′ 𝑤

(𝑙,𝑙+1)
𝑖′ 𝑗

ª®¬ ⊗ 𝑅 (𝑙+1)𝑗
(6)

Algorithm 1 Find Messages

Input: A trained neural network with 𝐿 layers, input vector x classi-

fied as output class 𝑦, a semiring (K, ⊕, ⊗, 0, 1) , annotation functions{
Θ(𝑙 ) : 𝑙 ∈ [1, 𝐿 − 1]

}
Output:

{
𝑅
(𝑙,𝑙+1)
𝑖←𝑗

∈ K : 𝑖 ∈ [0, 𝑛𝑙 ], 𝑗 ∈ [0, 𝑛𝑙+1 ], 𝑙 ∈ [1, 𝐿 − 1]
}

1: for 𝑖 = 0 to 𝑛𝐿 do
2: 𝑅

(𝐿)
𝑖
← I[𝑖 = 𝑦 ]

3: for 𝑙 = 𝐿 − 1 to 1 do
4: for 𝑖 = 0 to 𝑛𝑙 do
5: for 𝑗 = 0 to 𝑛𝑙+1 do

6: 𝑅
(𝑙,𝑙+1)
𝑖←𝑗

← Θ(𝑙 )
(

𝑎
(𝑙 )
𝑖

𝑤
(𝑙,𝑙+1)
𝑖 𝑗∑𝑛𝑙

𝑖′=0 𝑎
(𝑙 )
𝑖′ 𝑤

(𝑙,𝑙+1)
𝑖′ 𝑗

)
⊗ 𝑅 (𝑙+1)

𝑗

7: 𝑅
(𝑙 )
𝑖
←

⊕𝑛𝑙+1
𝑗=0

𝑅
(𝑙,𝑙+1)
𝑖←𝑗

8: return
{
𝑅
(𝑙,𝑙+1)
𝑖←𝑗

: 𝑖 ∈ [0, 𝑛𝑙 ], 𝑗 ∈ [0, 𝑛𝑙+1 ], 𝑙 ∈ [1, 𝐿 − 1]
}

Once these messages are computed, the overall relevance of a neu-

ron in layer 𝑙 is determined by adding up the messages coming

from all neurons in layer 𝑙 + 1, in accordance with (3). This means

𝑅
(𝑙 )
𝑖

=

𝑛𝑙+1⊕
𝑗=0

𝑅
(𝑙,𝑙+1)
𝑖←𝑗

=


𝑛𝑙+1⊕
𝑗=0

Θ(𝑙 )
©­«

𝑎
(𝑙 )
𝑖

𝑤
(𝑙,𝑙+1)
𝑖 𝑗∑𝑛𝑙

𝑖′=0 𝑎
(𝑙 )
𝑖′ 𝑤

(𝑙,𝑙+1)
𝑖′ 𝑗

ª®¬
 ⊗ 𝑅 (𝑙+1)𝑗

(7)

The pseudocode for the whole method is shown in Algorithm 1.

We now analyze our solution. The relevances computed by our

algorithm can be shown to satisfy the following.

Theorem 1. Algorithm 1 returns messages 𝑅 (𝑙,𝑙+1)
𝑖←𝑗

such that for
each 𝑙 ∈ [2, 𝐿] and 𝑗 ∈ [0, 𝑛𝑙 ]

𝑛𝑙−1⊕
𝑖=0

𝑅
(𝑙−1,𝑙 )
𝑖←𝑗

=


𝑛𝑙−1⊕
𝑖=0

Θ(𝑙−1)
©­«

𝑎
(𝑙−1)
𝑖

𝑤
(𝑙−1,𝑙 )
𝑖 𝑗∑𝑛𝑙−1

𝑖′=0 𝑎
(𝑙−1)
𝑖′ 𝑤

(𝑙−1,𝑙 )
𝑖′ 𝑗

ª®¬
 ⊗ 𝑅 (𝑙 )𝑗 (8)

Proof. Replacing 𝑙 with 𝑙 − 1 in (6) and applying ⊕ across all

possible values of 𝑖 (0 to 𝑛𝑙−1), we get the result. □

Note that (8) is a generalized approximation to (5), in that the

right-hand side of (8) is a certain quantity “multiplied” (⊗ instead

of ×) by 𝑅 (𝑙 )
𝑗

, in contrast to just 𝑅
(𝑙 )
𝑗

on the right-hand side of (5).

Moreover, the worst-case running time of our method can be

derived as follows.

Theorem 2. Algorithm 1 has a time complexity ofO
(
𝐿𝑛2𝑚

)
, where

𝑛𝑚 is the maximum number of neurons in a layer.

Proof. The majority of the time is spent on the iterative compu-

tations of line 6. The sum in the denominator can be precomputed

just after line 3; thus, each computation of line 6 takes constant time.

Hence, the total running time is O
(∑𝐿−1

𝑙=1
𝑛𝑙𝑛𝑙+1

)
or O

(
𝐿𝑛2𝑚

)
. □

4.2 Examples of Semirings
As mentioned above, our relevance values can be computed given

annotation functions which map real weighted activation values

to semiring values. The exact definitions of such activation func-

tions, however, depend on the semiring under consideration. In this

section, we define the activation functions for the semirings in §3.2.

Real Semiring. For the real semiring (R, +,×, 0, 1), the relevance
can be computed by setting the annotation function in all layers



Extending Layer-wise Relevance Propagation in Neural Networks using Semiring Annotations PW’ 25, June 22–27, 2025, Berlin, Germany

equal to the identity function, i.e. Θ : R→ R defined as Θ(𝑥) = 𝑥 .

Thus, the expression for the relevance of a node 𝑖 in layer 𝑙 in terms

of those in layer 𝑙 + 1 becomes

𝑅
(𝑙 )
𝑖

=


𝑛𝑙+1∑︁
𝑗=0

𝑎
(𝑙 )
𝑖

𝑤
(𝑙,𝑙+1)
𝑖 𝑗∑𝑛𝑙

𝑖′=0 𝑎
(𝑙 )
𝑖′ 𝑤

(𝑙,𝑙+1)
𝑖′ 𝑗

 × 𝑅 (𝑙+1)𝑗
(9)

Note that (9) combined with (3) is identical to (2) upto a multiplica-

tive factor of 𝑎
(𝑙 )
𝑖

because this factor appears, for the case 𝑖 = 𝐿 and

hence also propagated to the other layers, in (2) but not in (3).

Boolean Semiring. For the boolean semiring (B,∨,∧,⊥,⊤) where
B := {⊥,⊤}, the relevance (also called B-relevance) can be com-

puted using the same annotation function Θ : R→ B for all layers,

defined as Θ(𝑥) = 1[𝑥 ≥ 𝜃 ], where 𝜃 is a hyperparameter called

the threshold. Thus, the expression for the relevance of a node 𝑖 in

layer 𝑙 in terms of those in layer 𝑙 + 1 becomes

𝑅
(𝑙 )
𝑖

=


𝑛𝑙+1∨
𝑗=0

1
©­«

𝑎
(𝑙 )
𝑖

𝑤
(𝑙,𝑙+1)
𝑖 𝑗∑𝑛𝑙

𝑖′=0 𝑎
(𝑙 )
𝑖′ 𝑤

(𝑙,𝑙+1)
𝑖′ 𝑗

≥ 𝜃
ª®¬
 ∧ 𝑅 (𝑙+1)𝑗

(10)

Counting Semiring. For the counting semiring (N, +,×, 0, 1), the
relevance can be computed using the same annotation function

Θ : R→ N for all layers, defined similarly to those for the boolean

semiring, i.e. Θ(𝑥) = 1[𝑥 ≥ 𝜃 ], where 𝜃 is a hyperparameter called

the threshold. Thus, the expression for the relevance of a node 𝑖 in

layer 𝑙 in terms of those in layer 𝑙 + 1 becomes

𝑅
(𝑙 )
𝑖

=


𝑛𝑙+1∑︁
𝑗=0

1
©­«

𝑎
(𝑙 )
𝑖

𝑤
(𝑙,𝑙+1)
𝑖 𝑗∑𝑛𝑙

𝑖′=0 𝑎
(𝑙 )
𝑖′ 𝑤

(𝑙,𝑙+1)
𝑖′ 𝑗

≥ 𝜃
ª®¬
 × 𝑅 (𝑙+1)𝑗

(11)

Viterbi Semiring. For the Viterbi semiring ( [0, 1],max,×, 0, 1), the
relevance can be computed using the annotation function Θ : R→
[0, 1] defined as

Θ

(
𝑝𝑖∑
𝑖′ 𝑝𝑖′

)
=

|𝑝𝑖 |
max𝑖′ |𝑝𝑖′ |

(12)

guaranteeing the conservation property (5). Thus, the expression

for the relevance of a node 𝑖 in layer 𝑙 in terms of those in layer

𝑙 + 1 becomes

𝑅
(𝑙 )
𝑖

=


𝑛𝑙+1
max

𝑗=0

©­­«
���𝑎 (𝑙 )𝑖

𝑤
(𝑙,𝑙+1)
𝑖 𝑗

���
max

𝑛𝑙
𝑖′=0

���𝑎 (𝑙 )
𝑖′ 𝑤

(𝑙,𝑙+1)
𝑖′ 𝑗

��� ª®®¬
 × 𝑅

(𝑙+1)
𝑗

(13)

5 Experiments
We run experiments to demonstrate the types of explanations gen-

erated by using different semirings (§ 5.2 and § 5.3), along with

applications of semiring-based LRP to tasks like image mask com-

putation (§ 5.4) and neural network pruning (§ 5.5). The source

code [19] is written in Python and run on a 3.22 GHz macOS laptop

with 32 GB RAM and an integrated 14-Core-GPU.

5.1 Setup
Neural networks and datasets. We use two different neural net-

works, each trained on different datasets, as used in [6, 25]. The

first is a fully connected rectifier neural network with 4 layers

of sizes 784, 300, 100 and 10, trained on the MNIST handwritten

digits dataset [21]. The second is the deep convolutional network

VGG-16 [33] trained over the ImageNet visual dataset [14]. While

such examples are not representative of the state-of-the-art in deep

Figure 3: Input image and real-valued relevance (standard
LRP) for output neuron 0.

Reference Boolean Semiring

Figure 4: Input image and Boolean relevance for output neu-
ron 0 with 𝜃 = 10

−9.

learning, they are simple enough to allow for a clear understanding

of the relevance propagation process. Layer-wise relevance prop-

agation has been shown to be scalable to the latest architectures,

such as transformer models [1], and we believe that the same prin-

ciples apply to our semiring-based LRP. We let the generalization of

semiring-based LRP to more complex architectures as future work.

Semirings.We compare the explanations given by the real, boolean,

counting and Viterbi semirings (§ 3.2).

5.2 Results on the MNIST Dataset
Figure 3 shows relevance (real semiring) for the fully connected

rectifier network trained on the MNIST dataset. Pixels highlighted

in red have a positive relevance while blue pixels have a negative

relevance. As expected, the relevant pixels to classify this image as

a 0 are the white pixels in the input image.

As shown in Figure 4, relevance with the Boolean semiring pro-

vides a higher level of explanation, highlighting large zones of the

input image which contribute the most to the final classification.

Naturally, information about nuances in the contribution is lost.

Intuitively, activated pixels (input neurons with relevance ⊤) are
neurons such that there exists a relevant path (all edges having

weights higher than the threshold 𝜃 ) from this neuron to the output

neuron of class 0. While this condition might seem quite restric-

tive, note that computation graphs for neural networks are densely

connected: there are 784 × 300 × 100 = 23 520 000 different paths

connecting one input pixel to the output neuron of the class 0.
As far as the counting semiring is concerned, its element-wise

annotation function Θ is mostly identical to that for the Boolean

semiring, but the operators + and × bring more expressivity to

the framework, bringing more nuance in the highlighted zones.

For small networks like the one studied, the number of relevant
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Figure 5: Input image and counting relevance for output
neuron 0 with 𝜃 = 10

−9. The highest relevance is 2098.

Figure 6: Input image and Viterbi relevance for the output
neuron 0.

Figure 7: Input image and relevance for class "castle" of the
VGG-16 network.

paths from input to output neurons appears to be roughly the same,

making the final result (Figure 5) qualitatively similar to Figure 4.

The Viterbi semiring replaces the + operator of the real and

counting semirings by a max operator. In a context where neurons

can have the sameweighted sum of relevances, taking themaximum

relevance emphasizes the most important neurons, giving a more

contrasted visualization than classical LRP, as shown in Figure 6.

5.3 Results on the VGG-16 Network
Figure 7 shows a visualization of the relevance (real semiring) for

the VGG-16 network over an image of the class "castle". Note
that the castle part of the image is highlighted in red as intended.

Furthermore, both the street sign and the street light have strong

negative relevance; those two objects correspond to other classes

of the ImageNet dataset (street sign (919) and traffic light
(920)). Those two elements of the image would have positive rele-

vance for LRP starting from the output neurons 919 and 920.

Figure 8: Boolean relevance of class castle.

Figure 9: Counting relevance of class castle.

Figure 10: Viterbi relevance of class castle for layer 0.

Boolean relevance over VGG-16 (Figure 8) is coherent with re-

sults on the MNIST dataset: it specifies a main zone of importance

in the image, similarly to explanations of tools such as Grad-CAM

[31]. The three channels of the input layer (R, G, B) are aggregated

using OR/AND operations. While classical LRP provides a more

precise explanation by focusing on the contours of the relevant ob-

ject, Boolean relevance selects all the pixels of the object, including

its center. From a human point of view, there is no reason to believe

that the contours of the object are more relevant than the center of

the object. Therefore, Boolean LRP allows for a larger explanation

that is closer to what a human would produce.

The counting semiring (Figure 9) produces an explanation quali-

tatively similar to classical LRP. Compared to classic LRP, the choice

of thresholds limits the propagation of relevance to provide a more

localized explanation. This avoids the inclusion of less relevant

elements such as the street light on top of the image.
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Figure 11: Viterbi relevance of class castle for layer 28.

The Viterbi semiring relevance appears to scale poorly to deep

convolutional neural networks (Figure 10). Compared to the count-

ing or boolean semirings, it does not use thresholds to limit the

spread of relevance during convolutions, which leads to the uni-

formization of relevance throughout the image. Therefore, the ex-

planation obtained on the input layer is not humanly interpretable,

as it concentrated on a very small number of pixels that are not even

relevant to the classification. Nevertheless, an interesting aspect

of CNNs is that the intermediate LRP results are also visualizable,

since they respect spatial information. We can therefore display

the relevance for a deep layer (in Figure 11, the 28th layer) to un-

derstand why the relevance propagation failed with this semiring.
1

In this case, we can see that even at the beginning of the propaga-

tion, the relevance is already spread out in the image. Information

about the specific zone of the castle is already lost, and cannot be

recovered by the lowest layers.

5.4 Image Mask Computation
A simple application consists of computing a mask by combining

multiple relevance results. For instance, Figure 12 shows how the

Boolean relevances of multiple executions from the same class

can be combined using boolean operators to build image masks.

These masks delimitate spatial regions of the image that most likely

contain meaningful features used to classify images as the class 0.
For instance, the most useful input pixels for the classification as 0
are spatially located in a ring around the center of the image.

The same method also provides information on the internal

neurons of the network that were used in the final classification.

We believe that this technique can be used in the identification of

circuits inside the neural network [11], that is computational sub-

graphs of the network mostly responsible for one specific behavior

of the model.

The spatial localization of relevant pixels for a certain class do

not scale to more complex models, where the dataset is not centered:

if a certain object can be detected anywhere in the input image,

the final mask will capture the entire image. Nevertheless, deeper

neurons of networks are believed to be mostly spatially invariant,

and mask computation can hence be applied to the deepest layers.

1
Note that it remains harder to interpret deeper layers because of the way that channels

are aggregated: here, we always fused channels by summing them, but this approach

works better for 3 channels (input layer) than for 512 channels (28th layer).

Figure 12: Class-wise mask for Boolean relevance of class 0.

Figure 13: Mask of the relevant part of the images, obtained
by applying ∧ and ∨ pixel-wise to the results of boolean LRP.

To demonstrate the potential of mask computation using LRP, we

built a toy example based on MNIST. We generated a new dataset in

which images are made of two MNIST digits, one above the other

(see Figure 14). The label for each image is the uppermost digit; the

lower digit has no influence over the label and is used simply to

confuse the classifier. We expect the relevance of the lower part of

the image to be null. Figure 13 computes a mask of the relevant part

of the images by combining multiple Boolean LRP results. Without

prior knowledge of the connection between the label and the digits

in the images, we can see that the model is learning to detect the

upper digit in the image, and discards the lower digit.

The same procedure can be applied only for one class at a time,

like in Figure 14.

5.5 Neural Network Pruning using Relevances
The accuracy of modern neural networks often come at the cost

of large model size, increasing both storage, computational cost

and inference time. To reduce the size of such models, an efficient

technique called network pruning has been studied [12, 24], in which
neurons are removed from the network. A simple approach to
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Figure 14: Computation of the image mask, only for images
classified as 0.

Figure 15: Accuracy and loss evolution during network prun-
ing for different neuron selection methods.

selecting which neurons to prune is to select those with the smallest

ℓ1 or ℓ2 norm: that is, those whose associated column in the weight

matrix has the smallest norm. While this selection method yields

good results, we show that removing neurons with the smallest

average relevance – in the sense of LRP – allows the network to

perform better.

Figure 15 compares multiple selection methods. For each method,

the network was evaluated multiple times on a subset of the MNIST

test set, each time with an increasing number of neurons pruned

from the first layer, selected using the specific method. For LRP-

based methods, the relevance of each neuron is computed by taking

its average relevance on LRP results over images of the training set,

and neurons with the lowest absolute relevance are pruned first.

Three curve clusters can be identified: boolean and counting LRP

perform much worse than other selection methods, which can be

explained by the lack of granularity in the explanation that these

techniques provide. The ℓ1 and ℓ2 norm selection methods provide a

baseline to compare LRP techniques to, and both perform similarly

Figure 16: Accuracy and loss evolution during network prun-
ing for different neuron selection methods.

well. Finally, classic LRP and Viterbi LRP outperform the norm-

based methods by a small amount: this confirms the intuition that

LRP provides a more subtle explanation than simply the magnitude

of the weights connected to a neuron.

We also tried to extend network pruning using relevance values

to CNNs. We pruned VGG-16 using the same selection methods as

MNIST, with relevances computed on a 224 × 224 image of class

"castle"; thus, we evaluated the network on about 500 other images

of the same class resized (if necessary) to 224 × 224. The results,
shown in Figure 16, reveal nearly opposite trends to those of MNIST;

the ℓ2 and ℓ1 norm selection methods perform better. This implies

that we may need to incorporate more details in our method for

CNNs, e.g. designing a method to compute the optimal values of the

thresholds for the semirings (§ 4.2). This is an interesting direction

for future work.

6 Conclusion
We introduced Semiring-based Layer-wise Relevance Propagation

to extend LRP to a broader range of explanations. Semiring-based

LRP benefits from the capabilities of classic LRP, while letting the

user choose customized semirings for explanations that better suit

some applications or are easier to intepret. Experimentally, the

boolean and counting semirings provide scalable explanations that

qualitatively differ from classical LRP. We show that the semiring

generalization of LRP encapsulates different explanations types that

go beyond classical LRP. In the future, for usefulness to larger-scale

applications, it would be interesting to study other types of layers

in this framework: we proved that semiring-based LRP could scale

to CNNs, but architectures such as RNNs or transformers could also

benefit. While we experimentally focused on image classification

tasks, we also believe that semiring-based LRP can be applied to

other deep learning problems, such as natural language processing.

Moreover, scalability raises the challenge of performance, as the

current high-level implementation would be too slow for most

applications. Lower-level PyTorch modifications to allow semiring

provenance would most likely result in improved performance.
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